

Instantaneous relay

Latching relay

Fleeting contact relay

The range

The range of RH plug-in control relays with single socket type common to all models and standard front face includes the following models of 5 A relays with $4 \mathrm{C} / \mathrm{O}$ contacts, for a.c. and d.c. control:

- instantaneous relays,
- mechanical latching relays (memory relays),
- time delay relays,
- fleeting contact relays,
- flashing relays,
- sequencer step module.

Miniaturisation

The RH relay is designed to provide true miniaturisation, combining minimum installation size with:

- ensured dielectric strength for hard-wired equipment,
- standard pattern contact points compatible with automatic wiring methods,
- direct accessibility to connection points when wiring.

Vibration resistance

The highly versatile RH range offers numerous mounting and wiring possibilities for use in a wide variety of automation equipment installations.

The vibration resistance (severity 55 A conforming to IEC 68-2-6) quoted on pages 28002/2 and 28002/5 are for back wired sockets clipped onto a rigid plate, or for front wired sockets screwed onto a rigid panel.

Characteristics : pages 28002/2 to 28002/9	References: pages 28003/2 to 28003/5	Dimensions, schemes: pages 28004/2 to 28004/5

Plug-in relays

RH control relays

Front face

Base

The front of all RH relays have a standard appearance.
The self-adhesive function legend is placed at the top. This legend can be made up and positioned by the user as required.
The hinged flap 1 has three functions:

- acts as an extractor pull tab,
- provides protection against dust and accidental adjustment of settings accessible on the front face: operator, indicators, etc,
- sealing 2 of these active components if necessary.

In operation, the flap must always be down.
The active components differ according to the relay function, ie:

- for instantaneous and latching relays:
- manual operator 3 ,
- mechanical state indicator 3,
- for time delay, fleeting contact and flashing relays:
- timing range selector switch 4 , display 5 ,
- 1 or 2 relay state indicators 6 .

All RH relays have the same type of base, with outlets evenly spaced at 7.62 mm intervals, both vertically and horizontally.
This triple 2.54 mm module allows:

- the use of automatic wiring methods,
- the establishment of leakage paths, so ensuring a dielectric strength of 2500 V with the relay wired.
Also, the outlets are protected female sockets which makes it possible:
- to provide mechanical protection for these outlets during transport and installation,
- to incorporate within the relay (a plug-in and replaceable component) all active components, including plug-in connection clips (note that inside the relay, each contact carrier plate and its corresponding output connection clip are in one piece, with no soldered joins),
- to keep within the socket (a fixed and wired component) only very simple male conductor components, which makes these sockets very reliable.

Locking the relay into the socket

RH relay operating position
RH relays clip securely into their socket.
They are released by pressing the release tabs with a screwdriver or a finger. The relay can then be removed by simply pulling the extractor pull tab 1 . If the relay is accidentally released, it must be fully extracted before being clipped back into place.

The normal mounting position, with front face vertical and extractor pull tab pointing down is shown in the figure above.
The label gives the wiring scheme for the device together with other information (type, rating, voltage, etc).
Mounting the relay in any other position has virtually no effect on its operating characteristics.

Plug-in relays

RH control relays

RH sequencer

The analysis of an industrial process generally involves breaking it down into a succession of clearly defined basic tasks or actions, performed in a set order (opening a valve, for example, followed by starting a mixer, etc.).

The end of one operation generally establishes the start of the next operation. The RH sequencer is a simple way of controlling this type of process. Acting as the backbone of the automated system, it consists of a series of "step modules", one for each step in the sequential process.

Sequencer composition

Each "step module" in the sequencer consists of :

- an RHK-412 mechanical latched relay, with d.c. coil,
- a special socket, RHZ-42. The sockets clip onto a $35 \mathrm{~mm} _$rail and also plug into each other sideways, so providing electrical connection between themselves.

The sequencer is therefore made up of one or more rows, as required, of modules which plug and clip together to form the internal basic scheme of the sequencer, without any need for wiring between sockets.

Step module scheme

The latching relay in each module comprises :

- 2 internal switching contacts,
- 2 changeover operating contacts.

When the step module is activated, the energising coil actuates these 4 contacts:

- one of the internal switching contacts deactivates the previous module;
- the other internal switching contact supplies the validation circuit for the next module,
- the 2 operating changeover contacts are available for switching actions associated with the step (motors, etc.).

Socket RHZ-42 Terminal marking

Supply terminal

The following polarities must be complied with :

- Z+ : general reset.
- A+ : + supply to the sequencer.
- C : - supply.

All Z_{+}, A_{+}and C terminals in a horizontal row of step modules are electrically connected to each other.

Control terminals

Between E1 and E4, wiring of energisation condition(s).
E2, E3: spare terminals.
For logic connections required between non-adjacent modules :
F 1 = Sends reset instruction "n",
F 2 = Sends validation instruction " n ",
F3 and $X=$ Receives reset instruction,
$\mathrm{E} 1=$ Receives validation instruction.
Terminal X is equivalent to terminal F 3 but introduces a non-return diode, located in the socket, into the wired reset circuit. It is used in certain circuits, in particular for the step preceding a jump of one or more steps.
Please consult the technical manual on the "RH Electrical Sequencer" for more detailed information.

Plug-in relays

RH control relays

RH relays, all models

Time constant	This is the ratio L/R, expressed in milliseconds, between the inductance and the resistance of a load. The time taken for the current to establish within a load, switched by an RH relay contact for example, depends on the time constant for this load, or more precisely for the whole of the circuit.
Breaking	The breaking time with d.c. control depends on the time constant of the circuit and also on the opening distance of the switching contact : the inductive energy (1/2 Liz) is in fact dissipated in the arc which appears at the contact terminals. With a.c. control, breaking occurs when the current passes through zero. When a contact opens, an overvoltage is crated tits terminals; the higher the inductance of the circuit and the faster the contact opens, the higher the overvoltage (u = L.di/dt).
Variable quantities	All quantities (ambient temperature, supply voltage...) whose variations are likely to affect operation of the relay.
Rated thermal current	The highest value of current (rms value for a.c.) which a closed contact can sustain continuously, under the conditions specified by the manufacturer, without its temperature rise exceeding the limits given in the standards.
Making current	The highest value of current (rms value for a.c.) which a contact is capable of making onto.
Breaking current	With d.c. control, this is the ensured value of the current broken in a resistive or inductive circuit, with a given time constant, at a voltage U and for a specified number of operating cycles.
according to the number	

RH time delay relays

Repeat accuracy defines the variation in time delays obtained on a single relay, for a series of successive operating cycles, without modifying the setting and at rated conditions for temperature, voltage, etc

Setting accuracy
This is the maximum ensured differential between the time delay set and the time delay actually obtained, under normal conditions. This differential is expressed as a \% of the time delay per unit variation in the variable quantity (or for the total permissible variation range).

Stability according to variations in variable quantities

For each variable quantity, and within a permissible variation range, this is expressed as \% drift of the time delay per unit variation in the variable quantity (or for the total permissible variation range).

Time delay	- The time delay - at switch-off or - On-delay or - on energisation starts as soon as supply to the con trol circuit is switched on.	- The time delay - at switch-off or - Off-delay or
- on de-energisation		
starts as soon as supply to the		
control circuit is switched off.		

Characteristics :	References:	Dimensions, schemes :
pages 28002/2 to 28002/9	pages 28003/2 to 28003/5	pages $28004 / 2$ to $28004 / 5$

Characteristics

Plug-in relays

RH control relays
Instantaneous (RHN) and latching (RHK)

Plug-in relays

RH control relays

Instantaneous (RHN) and latching (RHK)

Type				RHN	RHK	
Control circuit characteristics						
Average consumption at $20^{\circ} \mathrm{C}$					Coil ${ }^{\circ} 1$	Coil ${ }^{\circ} 2$
	a.c. control	Inrush	VA	4.5	6	2.5
		Holding	VA	2.5	3.5	1.3
	d.c. control	Inrush or Holding	W	1.6	1.6	2.9
Permissible voltage variation	Conforming to 1 C of IEC 255			0.8..1.1 Uc 0.8...1.1 Uc	0.8...1.1 Uc	
Drop-out voltage	d.c. control			0.10...0.3 Uc	0.10...0.3 Uc	
	a.c. control			0.15...0.5 Uc	0.15...0.5	
$\operatorname{Cos} \varphi$ (a.c. control)	Inrush			0.6	0.6	
	Holding			0.7	0.7	
L/R (d.c. control)	L/R, magnetic circuit	Open	ms	12	12	
		Closed	ms	15	15	
Other characteristics						
Mechanical life (at Uc)	In millions of operating cycles			20	10	
Maximum operating rate	In operating cycles per second			6	2	
Operating time (at rated voltage and at $20^{\circ} \mathrm{C}$)	Between coil energisation and making of N/O contact	a.c. control	ms	2... 15	5... 17	
		d.c. control	ms	10... 20	12... 22	
	Between coil de-energisation and making of N/C contact	a.c. control	ms	1.2... 12	-	
		d.c. control	ms	2... 7	-	
	Between energisation of trip coil and making of N / C contact	a.c. control	ms	-	8... 16	
		d.c. control	ms	-	10... 14	
Minimum pulse duration	For latching or tripping of RHK latch relay		ms	-	≥ 50	

RH control relays
Time delay (RHT or RHR), fleeting contact (RHE or RHD), flashing (RHC)

Type					RHT, RHR	RHE, RHD	RHC
Environment							
Classification	Standard version				EDF, BV, USSR		
Conforming to standards	Standard version				IEC 255, NF C 45-250, VDE 0435		
Product approvals	Standard version				CSA, ASE	CSA, ASE	CSA, ASE
Protective treatment	Standard version				"TC"	"TC"	"TC"
Rated insulation voltage				V	250	250	250
Overvoltage protection	Conforming to IEC 255-5				3 kV , 0.5 Joule	3 kV , 0.5 Joule	3 kV , 0.5 Joule
Dielectric strength, relay "wired"				V	2500	2500	2500
Ambient air temperature around the device	Storage			${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
	Operation (Conforming to 1 C of IEC 255)			${ }^{\circ} \mathrm{C}$	$-5 \ldots+40$	$-5 \ldots+40$	$-5 \ldots+40$
	Permissible for operation between 0.85 and 1.1 Un			${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	$-25 \ldots+60$	$-25 \ldots+60$
Operating positions					Any	Any	Any
Vibration resistance	Conforming to NF C 20-616 Severity 55 A and IEC 68-2-6				$6 \mathrm{~g}(10 \ldots 55 \mathrm{~Hz})$	$6 \mathrm{~g}(10 \ldots 55 \mathrm{~Hz})$	$6 \mathrm{~g}(10 \ldots 55 \mathrm{~Hz})$
Shock resistance	Conforming to NF C 20-608		Severity 50 A		$50 \mathrm{~g}-11 \mathrm{~ms}$	$50 \mathrm{~g}-11 \mathrm{~ms}$	$50 \mathrm{~g}-11 \mathrm{~ms}$
Contact characteristics							
Number of contacts					$4 \mathrm{C} / \mathrm{O}$	$4 \mathrm{C} / \mathrm{O}$	$4 \mathrm{C} / \mathrm{O}$
Rated thermal current \quad For temperature $\leq 40^{\circ} \mathrm{C}$				A	$\begin{aligned} & 5 \text { (RHe-41ee) } \\ & 1 \text { (RHe-42ee) } \end{aligned}$	$\begin{aligned} & 5 \text { (RHe-41ee) } \\ & 1 \text { (RHe-42ee) } \end{aligned}$	5 (RHC)
Minimum switching capacity	At U min: 1 V or I min: 10 mA			mVA	150 (RHe-41ee)	150 (RHe-41ee)	150 (RHC)
	At U min: 1 V or I m	: 1 mA		mVA	50 (RHe-42ee)	50 (RHe-42ee)	-
Bounce time	Maximum duration of bounce $\leq 2 \mathrm{~ms}$			ms	≤ 10	≤ 10	≤ 10
Volt drop	For 3 A at 24 V			mV	≤ 100	≤ 100	≤ 100
Average resistance	Socket + relay at $20^{\circ} \mathrm{C}$			$\mathrm{m} \Omega$	30	30	30
Changeover time	a.c. control circuit	De-energising/Energising		ms	0.5... 6	0.5... 6	0.5... 6
		Energising/De-energising		ms	1... 3	1... 3	1... 3
	d.c. control circuit	De-en	g/Energising	ms	1.2... 4	1.2... 4	1.2... 4
		Energ	De-energising	ms	1... 4	1... 4	1... 4
Presentation: pages 28001/2 to 28001/5 Re pa	References : page 28003/3 et 28003/4	Dimensions, schemes : pages 28004/2 to 28004/5					

Plug-in relays

RH control relays
Time delay (RHT or RHR), fleeting contact (RHE or RHD), flashing (RHC)

Type				RHT, RHR	RHE, RHD	RHC
Control circuit characteristics						
Average consumption at $20^{\circ} \mathrm{C}$	Output state 1	a.c. control	VA	2.9	2.9	2.9
		d.c. control	W	2.5	2.5	2.5
	For 220 V a.c.		VA	3.5	3.5	3.5
Permissible voltage variation	Conforming to 1 C of IEC 255			0.8..1.1 Uc	0.8...1.1 Uc	0.8..1.1 Uc
External control contact	Type (only)			Mechanical	Mechanical	Mechanical

Other characteristics

Mechanical life (at Uc)	In millions of operating cycles			20		20	20
Status indication	During time delay period (Green LED)			Illuminated		-	-
	On making of on-delay contacts (Red LED)			Illuminated		Illuminated	Illuminated
Time delay (adjustable by potentiometer on front face)	3 setting ranges (selected by switch on front face)			Normal	Long	-	-
			s	0.2... 3	1.25... 24	-	-
			S	1.5... 30	12.5... 240	-	-
				$15 . .300 \mathrm{~s}$	$2 . .4$ min	-	-
	Repeat accuracy			± 1 \%		-	-
	Setting accuracy (1)	Normal time delay		± 15 \%		-	-
		Long time delay		± 20 \%		-	-
	Reset time		ms	≤ 100		-	-
Stability to influence quantities	Temperature (range : $-5 \ldots+40^{\circ} \mathrm{C}$) per ${ }^{\circ} \mathrm{C}$ around $20^{\circ} \mathrm{C}$			0.14 \%		-	-
	Voltage (range : 0.8...1.1 Uc) for extreme limits		ms	± 20		-	-
Immunity to micro-breaks	During time delay period		ms	Up to 10		-	-
	After time delay perio		ms	Up to 2		-	-
Fleeting contacts	Fleeting contact time		ms	-		200	-
	Tolerance		ms	-		$-20 \ldots+100$	-
	Response time at Uc and at $20^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	-		$\begin{aligned} & 10 \ldots 30 \text { (RHE) } \\ & 35 \ldots 65 \text { (RHD) } \end{aligned}$	-
Flashing relay symmetrical contact time	Adjustable by potentiometer on front face			-		-	$\begin{aligned} & 0.5 \ldots .5 \text { or } \\ & 2 \ldots . .30 \end{aligned}$

[^0]2... 30

Characteristics (continued)
 Plug-in relays

RH control relays
Sockets and termination adaptor for front wiring

Sockets

Type		RHZ-11	RHZ-12		RHZ-13
Cabling		With 2.8×0.5 tags for soldering or Faston connectors	With $0.8 \times 1.6 \times 22 \mathrm{~mm}$ pins for wire-wrap or termi-point at $7.62(3 \times 2.54 \mathrm{~mm})$ centres		With $0.8 \times 0.8 \times 4.3 \mathrm{~mm}$ solder pins for printed circuit board at $7.62(3 \times 2.54 \mathrm{~mm})$ centres
Rated thermal current	A	5	5		5
Dielectric strength	V	2500	2500		2500
Protection against direct finger contact		Yes	Yes		Yes
Function marking facility		Using three AB1-R or AB1-G clip-in characters or AB1-SA1 blank clip-in legend plate			
Relay-socket locking		By simply clipping in the relay. To release, press the 2 red locking tabs. Warning : if accidentally released, the relay must be fully extracted before being clipped back into place			
Cabling capacity		Solder tags, flexible cable $1 \times 1.5 \mathrm{~mm}^{2}$ or $2 \times 1 \mathrm{~mm}^{2}$	3 connections max. per termipoint pin, flexible cable		On all printed circuit boards 2.54 mm pitch, see page 28004/2 Side cover allows cleaning products to drain awayn socket resistant to these products
		Faston connector, flexible cable $1 \times 1.5 \mathrm{~mm}^{2}$ or 2×0.34 at $1 \mathrm{~mm}^{2}$	AWG	1 max	
			22	5 A	
			24	3 A	
			26	2.4 A	
		Solder tags, rigid cable $2 \times 1 \mathrm{~mm}^{2}$	Wire-wrap, rigid cable		
			AWG	1 max	
			20	7.5 A	
			22	5 A	
			24-26	2.4 A	

Termination adaptor

Type		RHZ-15
Wiring		
Front		Screw clamp terminals with 8 mm connector plates
Back		Double tags for soldering or 2.8×0.5 Faston connectors and $0.8 \times 1.6 \times 22 \mathrm{~mm}$ pins for wire-wrap or termi-point
Cabling capacity		Screw clamp terminals : 1 or $2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$ for flexible or rigid cable
		Tags and wire wrap or termi-point pins : see above RHZ-11 and RHZ-12
Rated thermal current	A	5
Dielectric strength	V	2500
Marking facility		Using three AB1-R or AB1-G clip-in characters per terminal

Presentation: pages $28001 / 2$ to $28001 / 5$	References: page 28003/5	Dimensions, schemes: pages $28004 / 2$ to $28004 / 5$

Plug-in relays

RH control relays
Sockets and termination adaptors for front wiring

Sockets

Type		RHZ-21	RHZ-22	RHZ-24	RHZ-42
Cabling		Screw clamp terminals	Double tags for Faston connectors 2.8×0.5	Double tags for Faston connectors 4.8×0.8	Single tags for Faston connectors 2.8×0.5
Rated thermal current	A	5	5	5	5
Dielectric strength	V	2500	2500	2500	2500
Protection against direct finger contact		Yes	Yes	Yes	Yes
Function marking facility		Using 4 clip-in characters AB1-R or AB1-G blank clip-in legend plate AB1-SA1			
Relay-socket locking		By simply clipping in the relay. To release, press the 2 red locking tabs. Warning : If accidentally released, the relay must be fully extracted before being clipped back into place.			
Cabling capacity	mm²	Flexible or solid cable $\begin{aligned} & 2 \times 2.5 \mathrm{max} \\ & 2 \times 0.5 \mathrm{~min} \end{aligned}$	Flexible cable 2×1.5 max $2 \times 0.34 \mathrm{~min}$	Flexible cable 2×1.5 max $2 \times 0.34 \mathrm{~min}$	Flexible cable 2×1.5 max 2×0.34 min

Termination adaptor

Type			RHZ-25		
Wiring					
Bottom connection			Screw clamp terminals with 8 mm connector plates		
Centre connection			Double tags for soldering or $2.8 \times 0.5 \mathrm{~mm}$ Faston connectors		
Top connection			Single pins, $0.8 \times 1.6 \times 22 \mathrm{~mm}$ for wire-wrap or termi-point, maximum of 3 connections.		
Cabling capacity			Screw terminals, flexible or rigid cable 1 or 2×0.5 to $1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$		
			Tags, flexible cable 1 or 2×0.34 to $1 \mathrm{~mm}^{2}$ or $1 \times 1.5 \mathrm{~mm}^{2}$, rigid cable 1 or $2 \times 1 \mathrm{~mm}^{2}$		
			Faston connectors, flexible cable 1 or 2×0.34 to $1.5 \mathrm{~mm}^{2}$ or $1 \times 1.5 \mathrm{~mm}^{2}$		
			Wire-wrap pins, rigid cable		Termi-point pins, flexible cable
			AWG	1 max	1 max
			20	7.5 A	5A
			22	5 A	3 A
			24-26	2.4 A	2.4 A
Rated thermal current		A	5		
Dielectric strength		V	2500		
Function marking facility			Using 4 clip-in characters AB1-R or AB1-G per terminal		
Presentation: pages 28001/2 to 28001/5		$\begin{aligned} & \text { References: } \\ & \text { page 28003/5 } \end{aligned}$		Dimensions, schemes : pages 28004/2 to 28004/5	

Plug-in relays

RH control relays

Electrical life of normal contacts

a.c. control

Curves at 1 operating cycle/second

Motor control

Curves at 1200 operating cycles/hour

d.c. control

Curves at 1 operating cycle/second

Curves at 1 operating cycle/second

Curves at 720 operating cycles/hour
(1) Number of operating cycles according to current broken

Plug-in relays

RH control relays

Operating diagrams

Time delay relay RHT on-delay

T : time delay

Fleeting contact relay RHE on energisation

Flashing relay RHC

Time delay relay RHR off-delay

T: time delay

Fleeting contact relay RHD on de-energisation

t2 : $10 \ldots 30 \mathrm{~ms}$

Plug-in relays

RH control relays
with $4 \mathrm{C} / \mathrm{O}$ contacts for control circuit : \sim or $=-$

Plug-in relays

RH control relays
with $4 \mathrm{C} / \mathrm{O}$ contacts for control circuit : \sim or $=-$

RHT-418E

Time delay relays - On-delay (1)

Time delay relays - Off-delay (1)

Relays with normal contacts	$\begin{aligned} & 12 \ldots 127 \mathrm{~V}(3) \\ & 50 \mathrm{~Hz}, 60 \mathrm{~Hz},=-= \end{aligned}$	$0.2 \ldots 300 \mathrm{~s}$	RHR-418•	BEF	0.130
		$1.25 \mathrm{~s} . . .40 \mathrm{~min}$	RHR-41380	BEF	0.130
	220 V, 240 V	$0.2 \ldots 300 \mathrm{~s}$	RHR-4110	M	0.130
		$1.25 \mathrm{~s} . . .40 \mathrm{~min}$	RHR-41310	M	0.130
Relays with Iow level contacts	$\begin{aligned} & 12 \ldots 127 \mathrm{~V}(3) \\ & 50 \mathrm{~Hz}, 60 \mathrm{~Hz},=- \end{aligned}$	$0.2 \ldots 300 \mathrm{~s}$	RHR-4280	BEF	0.130
		$1.25 \mathrm{~s} . . .40 \mathrm{~min}$	RHR-42380	BEF	0.130
	$\begin{aligned} & 220 \mathrm{~V}, 240 \mathrm{~V} \\ & 50 \mathrm{~Hz}, 60 \mathrm{~Hz} \end{aligned}$	$0.2 \ldots 300 \mathrm{~s}$	RHR-4210	M	0.130
		1.25 s... 40 min	RHR-42310	M	0.130

(1) Relay fitted with interference suppression coil with built-in diode.
(2) Standard control circuit voltages

(3) These products will not operate on $\sim 12 \mathrm{~V}$.

Presentation : pages 28001/2 to 28001/5	Characteristics: pages 28002/4. 28002/5,	$28002 / 8$ and 28002/9	Dimensions, schemes: pages 28004/2 to 28004/5

Plug-in relays

RH type PLC relays
with $4 \mathrm{C} / \mathrm{O}$ contacts for control circuit \sim or $=$-. current

| Presentation:
 pages 28001/2 to 28001/5 | Characteristics:
 pages 28002/4, 28002/5, | $28002 / 7$ and 28002/8 |
| :--- | :--- | :--- | | Dimensions, schemes: |
| :--- |
| pages 28004/2 to 28004/5 |

Plug-in relays

RH type PLC relays
Accessories

RHZ-11

RHZ-15

RHZ-71

RHZ-68

RHZ-21

RHZ-66

Accessories for back wiring

Description		Sold in lots of	Unit reference	Weight kg
Sockets (Markable	With $2.8 \times 0.5 \mathrm{~mm}$ tag for soldering or Faston connectors	10	RHZ-11	0.020
3 ABR clip-in characters)	With $0.8 \times 1.6 \times 22 \mathrm{~mm}$ pins for wire wrap or termi-point	10	RHZ-12	0.020
	With $0.8 \times 0.8 \times 4.3 \mathrm{~mm}$ solder pins on 7.62 mm centres	10	RHZ-13	0.020
Adaptor 4 terminals for "back-front" connection	Back : 4 tags $2.8 \times 0.5 \mathrm{~mm}$ and 4 pins $0.6 \times 1.6 \times 22 \mathrm{~mm}$ Front : 4 screw terminals for $2 \times 2.5 \mathrm{~mm}^{2}$ wires	1	RHZ-15	0.025
Hinged modular Chassis supplied in kit form	For 12 sockets or adaptors	1	RHZ-70	0.450
	For 21 sockets or adaptors	1	RHZ-71	0.500
	For 30 sockets or adaptors	1	RHZ-72	0.600
	For 36 sockets or adaptors (on 19 inch chassis)	1	RHZ-73	0.650
Cable clip	For mounting on hinged chassis	10	RHZ-68	0.010

Accessories for front wiring

Accessories for suppressors and for marking

| Accessories
 for
 suppressors | RC suppressor
 for relays
 $12 \ldots .220 \mathrm{~V}$ | With flexible cable |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1) To order, replace the \• in the reference with the required character.

Plug-in relays

RH type PLC relays
Accessories

RHZ-11

RHZ-15

RHZ-71

RHZ-68

RHZ-21

RHZ-66

Accessories for back wiring

Description		$\begin{aligned} & \text { Sold } \\ & \text { in } \\ & \text { lots of } \end{aligned}$	Unit reference	Weight kg
Sockets (Markable with 3 ABR clip-in characters)	With $2.8 \times 0.5 \mathrm{~mm}$ tag for soldering or Faston connectors	10	RHZ-11	0.020
	With $0.8 \times 1.6 \times 22 \mathrm{~mm}$ pins for wire wrap or termi-point	10	RHZ-12	0.020
	With $0.8 \times 0.8 \times 4.3 \mathrm{~mm}$ solder pins on 7.62 mm centres	10	RHZ-13	0.020
Adaptor 4 terminals for "back-front" connection	Back : 4 tags $2.8 \times 0.5 \mathrm{~mm}$ and 4 pins $0.6 \times 1.6 \times 22 \mathrm{~mm}$ Front : 4 screw terminals for $2 \times 2.5 \mathrm{~mm}^{2}$ wires	1	RHZ-15	0.025
Hinged modular Chassis supplied in kit form	For 12 sockets or adaptors	1	RHZ-70	0.450
	For 21 sockets or adaptors	1	RHZ-71	0.500
	For 30 sockets or adaptors	1	RHZ-72	0.600
	For 36 sockets or adaptors (on 19 inch chassis)	1	RHZ-73	0.650
Cable clip	For mounting on hinged chassis	10	RHZ-68	0.010

Accessories for front wiring

Accessories for suppressors and for marking

| Accessories
 for
 suppressors | RC suppressor
 for relays
 $12 \ldots .220 \mathrm{~V}$ | With flexible cable |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1) To order, replace the \• in the reference with the required character.

Plug-in relays

RH control relays

Maintain correct polarity when connecting for d.c. control.

Plug-in relays

RH control relays
Sockets and termination adaptors for front wiring

Mounting the relay on the socket Instant clip-in locking

Release by pressing tabs

| Presentation: | Characteristics: | References:
 pages 28001/2 to 28001/5 |
| :--- | :--- | :--- | | pages 28002/6 to 28002/7 |
| :--- |
| page 28004/5 |

Plug-in relays

RH control relays
Sockets and termination adaptors for back wiring

				e(1)	1 mm	2 mm
With relays	RHN	RHK	RHT to RHC	H	$35.7 \pm$	36.7 ± 0.15
c	57	93	111	(1) pla	thickn	

Mounting directly on hinged modular chassis RHZ-7p

	RHZ-70	RHZ-71	RHZ-72	RHZ-73
a	215	315	415	480
a 1	155	255	355	420
G	200	300	400	465

(1) modular 183

Presentation: pages 28001/2 to 28001/5	Characteristics : pages 28002/6 to 28002/7	References: page 28003/5

Plug-in relays

RH control relays
Sockets and termination adaptors for back wiring

Socket
RHZ-13

Socket mounting

On all printed circuit boards with pin spacing of 2.54 mm .
The 7.62 mm spacing between pins $(3 \times 2.54 \mathrm{~mm})$ allows space between rows of pins for a $1.8 \mathrm{~mm} \times 70 \mathrm{~m}$ conductor with a capacity of 5 A at 240 V a

Presentation:	Characteristics:	References:
pages 28001/2 to 28001/5	pages 28002/6 to 28002/7	page 28003/5

[^0]: on front face
 (1) $\%$ of the maximum value of the range selected

